Enhancement of Tribological Properties of Cubic and Hexagonal Boron Nitride Nanoparticles Impregnated on Bearing Steel via Vacuum Heat Treatment Method

Author:

Bhalerao Vrushali YogeshORCID,Lakade Sanjay Shridhar

Abstract

In the current world of coatings and nanomaterials, specifically bearings, zinc, chromium, nickel, diamond-like coatings, and molybdenum disulfide are being used, to name but a few. Boron nitride in various forms has been used to enhance the surface properties, such as hardness, wear resistance, and corrosion resistance of dies, tools, etc. In this paper, a significant focus is being given to the improvement of the surface properties of bearing-steel materials by the impregnation of cubic and hexagonal boron nitride nanoparticles. The vacuum heat treatment method is used for treating the sample pins of material equivalents to EN31. In the design of the experiments, the Taguchi method with L27 orthogonal array is used for the optimization of various parameters, such as the weight % of c-BN and h-BN nanoparticles and the temperature of the vacuum treatment. With the help of preliminary experimentation, the three levels of three parameters are decided. The microhardness analysis shows an improvement from 321 HV0.1 to 766 HV0.1 for a 50 µm case depth of nanoparticle impregnation. The evaluation of the influence of selected factors is also performed using ANOVA and the S/N ratio, and it was revealed that hex boron nitride (h-BN) affects the microhardness value more than the other two factors. The friction and wear testing reveal that the wear properties are improved by approximately 1.6 times, and the frictional force also decreases by approx. 1.4 times. Scanning electron microscope (SEM) analysis shows that the nanoparticles are penetrated by 21.09% and 46.99% atomic weight. In addition, a reduction in the friction coefficient and better wear response were achieved as a result of the heat treatment with nanoparticle impregnation.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3