Affiliation:
1. National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
2. Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
Abstract
During surgery and after, pathogens can contaminate indwelling and implanted medical devices, resulting in serious infections. Microbial colonization, infection, and later biofilm formation are major complications associated with the use of implants and represent major risk factors in implant failure. Despite the fact that aseptic surgery and the use of antimicrobial medications can lower the risk of infection, systemic antibiotic use can result in a loss of efficacy, increased tissue toxicity, and the development of drug-resistant diseases. This work explores the advancements in antimicrobial coatings for head-related implantable medical devices, addressing the critical issue of infection prevention. It emphasizes the significance of these coatings in reducing biofilm formation and microbial colonization and highlights various techniques and materials used in creating effective antimicrobial surfaces. Moreover, this article presents a comprehensive overview of the current strategies and future directions in antimicrobial coating research, aiming to improve patient outcomes by preventing head-related implant-associated infections.
Funder
Romanian National Core Program LAPLAS VII
PNCDI III
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献