Advances in Antimicrobial Coatings for Preventing Infections of Head-Related Implantable Medical Devices

Author:

Negut Irina1ORCID,Albu Catalina1,Bita Bogdan12ORCID

Affiliation:

1. National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania

2. Faculty of Physics, University of Bucharest, 077125 Magurele, Romania

Abstract

During surgery and after, pathogens can contaminate indwelling and implanted medical devices, resulting in serious infections. Microbial colonization, infection, and later biofilm formation are major complications associated with the use of implants and represent major risk factors in implant failure. Despite the fact that aseptic surgery and the use of antimicrobial medications can lower the risk of infection, systemic antibiotic use can result in a loss of efficacy, increased tissue toxicity, and the development of drug-resistant diseases. This work explores the advancements in antimicrobial coatings for head-related implantable medical devices, addressing the critical issue of infection prevention. It emphasizes the significance of these coatings in reducing biofilm formation and microbial colonization and highlights various techniques and materials used in creating effective antimicrobial surfaces. Moreover, this article presents a comprehensive overview of the current strategies and future directions in antimicrobial coating research, aiming to improve patient outcomes by preventing head-related implant-associated infections.

Funder

Romanian National Core Program LAPLAS VII

PNCDI III

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3