Effects of Nitriding and Thermal Processing on Wear and Corrosion Resistance of Vanadis 8 Steel

Author:

González-Pociño Alejandro1ORCID,Alvarez-Antolin Florentino1ORCID,Peral-Martinez Luis Borja1

Affiliation:

1. Materials Science and Metallurgical Engineering Department, Edificio Departamental Este, Campus de Gijón, University of Oviedo, St. Wilfredo Ricart, s/n, 33007 Gijón, Spain

Abstract

Vanadis 8 steel is a tool steel manufactured by powder metallurgic processing. Its main alloy elements are V, Cr and Mo. By implementing an experimental design with five factors—all of them are related to the thermal processing of this steel and with ionic nitriding—the effects of said factors on adhesive wear resistance and corrosion resistance were studied. For this purpose, Pin-on-Disc wear tests and lineal polarization resistance tests were carried out using an aqueous solution with 3.5% NaCl by weight. The main aim was to increase this steel use in more aggressive environmental conditions, such as in coastal environments. By means of XRD, the percentage of retained austenite was determined, and by SEM-EDX, the microstructure was revealed. The conclusion is that adhesive wear resistance is improved if thermal processing parameters are at such levels that increase austenite destabilization and reduce retained austenite content. This means to destabilize austenite at 1180 °C during 1 h, with oil quenching, tempering at 520 °C during 2 h and ionic nitriding at 520 °C during 2 h. Corrosion resistance is highly improved with ionic nitriding. At the same time, to compensate for the negative effect on corrosion resistance of a high density of primary and secondary carbides, it is essential to carry out the ionic nitriding treatment. The harmful effect of electrochemical microcells that appear in the carbide/matrix interface is compensated by the passivating effect generated by the nitrided surface.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3