A Leakage Model of Contact Mechanical Seals Based on the Fractal Theory of Porous Medium

Author:

Ni Xingya,Ma Chenbo,Sun Jianjun,Zhang YuyanORCID,Yu Qiuping

Abstract

A theoretical model for calculating the leakage rate of contact mechanical seals based on the fractal theory of the porous media, which can consider the real seal contact interface and objectively reflect the flow of the interfacial fluid from a microscopic perspective, is established. In order to obtain the microstructural parameters of the porous media included in the leakage model, such as the fractal dimension and the maximum pore diameter, the real seal contact interface obtained from experiments is reconstructed, a contact model between the dynamic and static rings is proposed, and then the calculation methods for the interface characteristic parameters are provided. Numerical simulation results show that as the contact pressure increases from 0.05 to 0.5 MPa, the interface porosity and the maximum pore diameter decreases gradually. Furthermore, the fractal dimension of the pore area increases and the leakage rate of the interface decreases from 0.48 to 0.33 mL/h. The proposed method provides a novel way of calculating the leakage rate of contact mechanical seals.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference34 articles.

1. Mechanical Seals;Mayer,1981

2. How much do we know about mechanical seals?

3. On the kinematics and kinetics of mechanical seals, rotors, and wobbling bodies

4. Study on Flow Characteristics of Leakage Fluid between Contact Mechanical Seals;Lu,2017

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3