Achieving Superior Corrosion Resistance of TiB2 Reinforced Al-Zn-Mg-Cu Composites via Optimizing Particle Distribution and Anodic Oxidation Time

Author:

Li Dongdong12,Gao Kewei13,Liu Jun45,Huang Jie4,Zhao Dechao4,Gong Yue4,Wang Mingliang45,Chen Zhe45,Wang Haowei45

Affiliation:

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. China Academy of Launch Vehicle Technology, Beijing 100076, China

3. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

4. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

5. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

In this study, the effects of particle distribution and anodizing time on the microstructure and corrosion resistance of the TiB2 particle-reinforced Al-Zn-Mg-Cu composite were investigated. Relationships between TiB2 particle distribution, anodizing time, coating growth rule, and corrosion resistance were characterized and discussed using an optical microscope, a scanning electron microscope, an electrochemical test, and a salt spray test. Dispersion of TiB2 particles by powder metallurgy improved the corrosion resistance of the anodized coating on composites. Compared with the matrix, the corrosion potential (Ecorr) of the anodized coating shifted to the positive direction, and the corrosion current density (icorr) decreased. Meanwhile, the icorr of the coating decreased initially and then increased with the extension of the anodization time. The corrosion resistance of the coating was optimal at an anodization time of 20 min. The corrosion resistance of the composite was determined by both the porosity and thickness of the coating. Additionally, all samples treated by potassium dichromate sealing had no corrosion points after a 336-h salt spray test, demonstrating an excellent corrosion resistance suitable for harsh environmental applications in industry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3