Effects of Substrates on Thin-Film Growth of Nickel Zinc Ferrite by Spin-Spray Deposition

Author:

Liu Hai12,Yu Zhong2,Song Xinglian3,Ran Maojun2,Jiang Xiaona2,Lan Zhongwen2,Sun Ke2ORCID

Affiliation:

1. Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, School of Physics Electronic Engineering, Hubei University of Arts and Science, Xiangyang 441053, China

2. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China

3. Shandong Chunguang Magnetoelectric Technology Co., Ltd., Linyi 276017, China

Abstract

In certain applications, such as on-chip integrated inductors, ferrite materials are highly desirable owing to their superior magnetic and insulation properties. Spin-spray deposition is a promising method for producing high-quality thin films of ferrite, as it does not require a vacuum and can operate at low temperatures. A comprehensive analysis was conducted to investigate the influence of the substrate on the microstructure and magnetic properties of the thin films, and the growth mechanism of this phenomenon was discussed. In addition, first-order reversal curve measurements were used to study the coercivity and grain size distribution. The results indicate that thermal conductivity played a significant role in determining the thin-film growth during spin spray deposition. Polyimide is considered a more suitable substrate under this process due to its appropriate thermal conductivity, which results in more uniform grain distribution and improved magnetic properties, with maximum permeability and a cutoff frequency reaching 55 and 485 MHz, respectively. Our results provide valuable insights into the mechanism of spin-spray deposition and offer an effective way to tune the performance of ferrite thin-film materials.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3