Curing Reaction Kinetics of the EHTPB-Based PBX Binder System and Its Mechanical Properties

Author:

Zhang Xing,Liu Yucun,Chai Tao,Ma Zhongliang,Jia Kanghui

Abstract

In this research, differential scanning calorimetry (DSC) was employed to compare the curing reaction kinetics of the epoxidized hydroxyl terminated polybutadiene-isophorone diisocyanate (EHTPB-IPDI) and hydroxyl terminated polybutadiene-isophorone diisocyanate (HTPB-IPDI) binder systems. Glass transition temperature (Tg) and mechanical properties of the EHTPB-IPDI and HTPB-IPDI binder systems were determined using the DSC method and a universal testing machine, respectively. For the EHTPB-IPDI binder system, the change of viscosity during the curing process in the presence of dibutyltin silicate (DBTDL) and tin 2-ethylhexanoate (TECH) catalysts was studied, and the activation energy was estimated. The results show that the activation energies (Ea) of the curing reaction of the EHTPB-IPDI and HTPB-IPDI binder systems are 53.8 and 59.1 kJ·mol−1, respectively. While their average initial curing temperatures of the two systems are 178.2 and 189.5 °C, respectively. The EHTPB-IPDI binder system exhibits a higher reactivity. Compared with the HTPB-IPDI binder system, the Tg of the EHTPB-IPDI binder system is increased by 5 °C. Its tensile strength and tear strength are increased by 12% and 17%, respectively, while its elongation at break is reduced by 10%. Epoxy groups and isocyanates react to form oxazolidinones, thereby improving the mechanical properties and thermal stability of polyurethane materials. These differences indicate that the EHTPB-IPDI binder system has better thermal stability and mechanical properties. During the EHTPB-IPDI binder system’s curing process, the DBTDL catalyst may ensure a higher viscosity growth rate, indicating a better catalytic effect, consistent with the prediction results obtained using the non-isothermal kinetic analysis method.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3