Synthesis and Characterization of a Polyurethane Phase Separated to Nano Size in an Epoxy Polymer

Author:

Kim Tae Hee,Kim Miri,Lee Wonjoo,Kim Hyeon-Gook,Lim Choong-Sun,Seo Bongkuk

Abstract

Epoxy resins are widely applicable in the aircraft, automobile, coating, and adhesive industries because of their good chemical resistance and excellent mechanical and thermal properties. However, upon external impact, the crack propagation of epoxy polymers weakens the overall impact resistance of these materials. Therefore, many impact modifiers have been developed to reduce the brittleness of epoxy polymers. Polyurethanes, as impact modifiers, can improve the toughness of polymers. Although it is well known that polyurethanes (PUs) are phase-separated in the polymer matrix after curing, connecting PUs to the polymer matrix for enhancing the mechanical properties of polymers has proven to be challenging. In this study, we introduced epoxy functional groups into polyol backbones, which is different from other studies that focused on modifying capping agents to achieve a network structure between the polymer matrix and PU. We confirmed the molecular weight of the prepared PU via gel permeation chromatography. Moreover, the prepared material was added to the epoxies and the resulting mechanical and thermal properties of the materials were evaluated. Furthermore, we conducted tensile, flexural strength, and impact resistance measurements. The addition of PU to the epoxy compositions enhanced their impact strength and maintained their mechanical strength up to 10 phr of PU. Furthermore, the morphologies observed with field emission scanning electron microscopy and transmission electron microscopy proved that the PU was phase separated in the epoxy matrix.

Funder

Korea Research Institute of Chemical Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3