Polarization-Dependent Plasmon Coupling in Gold Nanoparticles and Gold Thin-Film Systems

Author:

Shan Feng1ORCID,Zhu Yanyan2,Huang Jingyi2

Affiliation:

1. Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China

2. School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China

Abstract

The characteristics of gap plasmon formed by nanoparticle-on-mirror (NPOM) structures composed of metal nanoparticles (MNPs) and metal thin films have aroused interest for use in various optoelectronic devices. The resonance enhancement characteristics in the gap region of an NPOM structure composed of gold nanoparticles and gold thin films are simulated theoretically by the finite element method (FEM). The resonant spectrum obtained by the internal coupling effect of the gap can be flexibly controlled by the polarization of incident light and the thickness of the dielectric layer between the MNPs and the metal thin films. We study the resonance spectra of polarization-dependent gold ellipsoidal nanoparticles (GENPs) and gold thin films in the gap region of an NPOM structure. The GENPs and gold thin films are separated by a dielectric layer with a refractive index of 1.36. We observe that the intensity of the resonance electric field in the gap region is inversely proportional to the polarization angle. Similarly, the intensity of the local electric field resonance peak in the gap region is inversely proportional to the thickness of the dielectric layer. When the thickness of the dielectric layer is 0.3 nm and the polarization angle is 0°, the best resonant electric field intensity of 2200 V/m is obtained in the gap region of the NPOM structure (the power of incident light is 1 mW). Finally, the resonant peak wavelength of the electric field in the gap region of the NPOM structure is also controlled by the polarization angle of the incident light and the thickness of the dielectric layer.

Funder

Key Scientific Research Projects in Universities of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3