Robust Superhydrophobic Coatings for Enhanced Corrosion Resistance and Dielectric Properties

Author:

Shao Wentao,Kan Qi,Bai Xinxin,Wang Chengqian

Abstract

Multifunctional super-repellent composite coatings play an important part in academic and industrial fields, while it is still a great challenge to effectively integrate a variety of functions into one material. Mg alloys having low density, high strength-to-weight ratio, and good shielding, are widely used in electronic devices, while it is susceptible to sever corrosion especially in moist air and ocean atmosphere. Here, a versatile superhydrophobic coating with organic-inorganic hybrid structure and hierarchical surface textures, integrating robust wettability with design manipulation is synthesized by assembling modified SiO2 nanoparticles on polytetrafluoroethylene (PTFE) layer on the AZ31 Mg alloy. The composite coating has good water repellency with a contact angle of 170.5°, due to the micro/nano textures and low surface energy. The composite coating increases the corrosion potential of AZ31 Mg from −1.483 V to −1.243 V, and reduces the corrosion current density by 3 orders of magnitude. Remarkably, the superhydrophobic coating displays enticing damage-resistance (>40 cycles), superior environmental stability (thermal shock and outdoor placement) and self-cleaning function. Moreover, the composite coatings display excellent electrical properties with superior voltage resistance (>30 V/μm), and high resistivity (>1012 Ω∙cm), as well the coating has a low dielectric constant (≈3.91) and dielectric loss (0.0094), which are great advantages for the electronic or electrical engineering applications. We expect that the versatile super-repellent coating can be used as candidates for novel advanced energy materials, especially in harsh environments.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3