Annealing Effect on the Structural, Magnetic, Electrical, Optic Property, Nanomechanical, and Adhesive Characteristics of Co60Fe20Yb20 Thin Films on Glass Substrate

Author:

Liu Wen-Jen,Chang Yung-Huang,Chen Yuan-TsungORCID,Chiu Po-Chun,Wang Yu-Zhi,Lin Shih-HungORCID,Chi Po-Wei

Abstract

In this study, X-ray diffraction (XRD) analysis showed the amorphous nature of the Co60Fe20Yb20 films deposited at room temperature (RT), 100 °C, and 200 °C. The body-centered cubic (BCC) CoFe (110) characteristic peak was visible at 44.7° after annealing films of 40 nm and 50 nm at 300 °C. The highest alternating current magnetic susceptibility (χac) value was 0.21 at 50 Hz in a 50 nm, and the lowest resistivity value was 1.02 (×10−2 Ω·cm) in a 50 nm. In terms of nano-indication measurement, the highest value of hardness was 9.29 GPa at 300 °C in a 50 nm. When the thickness increased from 10 nm to 50 nm, the hardness and Young’s modulus of the Co60Fe20Yb20 film also showed a saturation trend. The Co60Fe20Yb20 film had the maximum surface energy at 50 nm after 300 °C annealing. The transmittance of Co60Fe20Yb20 films decreased when the thickness was increased because the thickness effect suppresses the photon signal. Due to high χac, low electrical performance, strong nano-mechanical properties, and high adhesion, it was discovered in this work that 50 nm with annealing at 300 °C was the ideal condition for the magnetic and adhesive capabilities of Co60Fe20Yb20 film. More importantly, replacing the CoFeB seed or buffer layer with a thin CoFeYb film improved the thermal stability, making CoFeYb films attractive for practical magnetic tunnel junction (MTJ) applications. Furthermore, the specific properties of Co60Fe20Yb20 films were compared to those of Co60Fe20Y20 films, demonstrating that the specific properties of these two materials may be compared.

Funder

Ministry of Science and Technology

National Yunlin University of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3