The Influence of Boron Carbide on the Mechanical Properties and Bonding Strength of B4C/Nickel 63 Coatings of Brake Disc

Author:

Ramesh BalasubramanianORCID,Elsheikh AmmarORCID,Satishkumar Shanmugam,Shaik AbdulORCID,Djuansjah Joy,Ahmadein Mahmoud,Moustafa EssamORCID,Alsaleh Naser

Abstract

Metal-based ceramic composite laser cladding offers substantial compensations in enhancing brake disc surface characteristics. Laser cladding was utilized to combine B4C powder (10–40%) with Ni 63 powder to make Boron Carbide (B4C)/Nickel 63 composite coatings. For the subsequent experiments, the specimens were ground and polished. Bonding strength, fracture toughness, and residual stress were examined with the B4C content. The fracture morphologies were checked using a scanning electron microscope (SEM). It was observed that the bonding strength of various coatings might approach 175 MPa. Best bonding was observed when the B4C level was between 15% and 30%. The porousness of the coating continuously raised as B4C content increased. The coating’s maximum permeability was 5.6% after the B4C level reached 30%. As the B4C level in the coating grew, the coating’s compression resistance decreased. The bonding strength was within desirable limits, and compression resistance was consistently strong. The material bending strength increased when the B4C materials were reduced below 35%; at this level, the bending strength was highest. The bending strength was covered by the optimal range of bonding strength. Good bonding strength and mechanical characteristics were achieved when B4C content was 20% to 30%. The 20% B4C coating had the smoothest fracture morphologies and the strongest bonding strength, making it the most stable. For the estimation of total matrix deformation and corresponding coating stress on coated brake discs, Ansys software was utilized to create a static structural model.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3