Comparative Study of HVOF Cr3C2–NiCr Coating with Different Bonding Layer on the Interactive Behavior of Fatigue and Corrosion

Author:

He Bing,Zhang Lijie,Yun Xiao,Wang Jing,Zhou Guangzhi,Chen ZhikaiORCID,Yuan Xiaoming

Abstract

In order to improve material service life under a fatigue and corrosion coupling environment, a high-velocity oxygen fuel (HVOF) Cr3C2–NiCr coating with a bonding layer was prepared. The objective was to obtain the optimum bonding layer for the HVOF Cr3C2–NiCr coating, which included a laser cladding (LC) Ni625 layer, extreme high-speed laser material deposition (EHLA) Ni625 layer and HVOF NiCr layer. Fatigue properties of the samples with various bonding layers were investigated by means of a four-point bending fatigue test. Electrochemical impedance spectroscopy (EIS) and the salt spray test were executed after the bending fatigue test to simulate the interactive effect of fatigue and corrosion atmosphere. Failure surfaces were characterized by scanning electron microscopy (SEM) and an energy-dispersive spectrometer (EDS) to indicate the details of corrosion products. Corrosive behaviors of samples were adequately demonstrated according to the results, which included the curves of potentiostatic polarization, impedance magnitude and phase degree, and corrosion products. The result showed that the cycles of perforative cracking for the sample with the EHLA Ni625 bonding layer was almost three times than that of the sample with the HVOF NiCr layer. The magnitude of EIS reduced from ~105 to ~103 for the sample after BFT. Eventually, the main improvement mechanism of the HVOF Cr3C2–NiCr coating with the EHLA Ni625 bonding layer was attributed to the grain refinement of the bonding layer and performed a good level of metallurgical bonding with the substrate.

Funder

National Key Technologies Research and Development Program;Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3