Abstract
In order to improve material service life under a fatigue and corrosion coupling environment, a high-velocity oxygen fuel (HVOF) Cr3C2–NiCr coating with a bonding layer was prepared. The objective was to obtain the optimum bonding layer for the HVOF Cr3C2–NiCr coating, which included a laser cladding (LC) Ni625 layer, extreme high-speed laser material deposition (EHLA) Ni625 layer and HVOF NiCr layer. Fatigue properties of the samples with various bonding layers were investigated by means of a four-point bending fatigue test. Electrochemical impedance spectroscopy (EIS) and the salt spray test were executed after the bending fatigue test to simulate the interactive effect of fatigue and corrosion atmosphere. Failure surfaces were characterized by scanning electron microscopy (SEM) and an energy-dispersive spectrometer (EDS) to indicate the details of corrosion products. Corrosive behaviors of samples were adequately demonstrated according to the results, which included the curves of potentiostatic polarization, impedance magnitude and phase degree, and corrosion products. The result showed that the cycles of perforative cracking for the sample with the EHLA Ni625 bonding layer was almost three times than that of the sample with the HVOF NiCr layer. The magnitude of EIS reduced from ~105 to ~103 for the sample after BFT. Eventually, the main improvement mechanism of the HVOF Cr3C2–NiCr coating with the EHLA Ni625 bonding layer was attributed to the grain refinement of the bonding layer and performed a good level of metallurgical bonding with the substrate.
Funder
National Key Technologies Research and Development Program;Natural Science Foundation of Hebei Province
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献