Exploiting Turmeric’s Coloring Capability to Develop a Functional Pigment for Wood Paints: Sustainable Coloring Process of Polyamide 11 Powders and Their Strengthening Performance

Author:

Calovi Massimo1ORCID,Rossi Stefano1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy

Abstract

Currently, the wood coatings industry is focusing on creating unique, vibrant finishes using new functional pigments. Simultaneously, there is a growing adoption of eco-friendly bio-based materials, reflecting trends in other sectors and supporting the circular economy. Thus, the aim of this study is to unveil a straightforward, cost-effective, and notably sustainable process for exploiting the coloring potential of turmeric powder and coloring polyamide 11-based fillers, employed as multifunctional pigments for wood coatings. Through the incorporation of this additive into a wood paint, the study demonstrates its dual effect of enhancing the aesthetics of the final composite layer while leveraging the beneficial protective properties inherent to polyamide 11. The impact of these additives on sample aesthetics is assessed through optical observations, as well as measurements of color, gloss, and surface roughness. The strengthening contribution of the functional pigment is evaluated using the Taber abrasion resistance test, static friction coefficient measurements, and Buchholz surface hardness test. Finally, the aesthetic consistency of the bio-based filler and the coloring efficiency of the sustainable process are tested by subjecting the samples to aggressive conditions, including the UV-B chamber exposure test, cold liquids resistance tests, and water uptake test. Ultimately, the study illustrates how this functional bio-based pigment not only provides sufficient protection but also meets current eco-requirements, thereby contributing to the sustainability of the wood coatings industry.

Funder

European Union–FSE-REACT-EU

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3