Fabrication and Characterization of W-Substituted ZnFe2O4 for Gas Sensing Applications

Author:

Al-Enizi Abdullah1ORCID,Abd-Elkader Omar2,Shaikh Shoyebmohamad1ORCID,Ubaidullah Mohd1ORCID,Abdelkader Mohamed3ORCID,Mostafa Nasser4

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

4. Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt

Abstract

A sol–gel technique was successfully employed in creating pure and W-substituted zinc ferrite, with nominal compositions of ZnFe2−2xWxO4 (0.0 ≤ x ≤ 0.15). For the purposes of investigating the physical and chemical properties of the generated powders, several analytical techniques were used. In TEM images of all the compositions, mixed-shaped particles (cubic, spherical, and hexagonal) were observed. The crystallite size decreases from 82 nm (x = 0.0) to 32 nm (x = 0.15) with an increase in the W doping contents in the ZnFe2O4 lattice. The microstrain increases with increasing W doping content. Furthermore, the surface area of pure ZnFe2O4, 0.05 W-ZnFe2O4, 0.10 W-ZnFe2O4, and 0.15 W-ZnFe2O4 NPs were calculated as being 121.5, 129.1, 134.4 and 143.2 m2 g−1, respectively, with a mesoporous pore structure for all ferrite samples. The calculated BJH pore size distribution was within the range of 160 to 205 Å. All W-doped ZnFe2O4 samples show H-M loops with paramagnetic characteristics. The magnetization (M) directly increases by increasing the applied field (H) without achieving saturation up to 20 kA/m. For comparison, the magnetization at 20 kA/m gradually decreases with increasing W doping content. Among all the synthesized samples, the 0.15 W-ZnFe2O4 NPs demonstrated the highest sensitivity towards acetone gas at 350 °C.

Funder

National Plan for Science, Technology and Innovation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3