Novel Bacteriophage-Based Food Packaging: An Innovative Food Safety Approach

Author:

Wagh Rajesh V.12ORCID,Priyadarshi Ruchir2ORCID,Rhim Jong-Whan2ORCID

Affiliation:

1. Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary Animal Sciences University, Ludhiana 141001, India

2. BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea

Abstract

Research and development on innovative packaging materials have advanced significantly to safeguard packaged food against microbial contamination and oxidation. Active packaging has recently developed as a practical approach to reducing oxidation and microbiological growth in packaged goods, extending their shelf life and protecting consumers from potential harm. Active food packaging includes O2, CO2 scavengers, moisture absorbers, U. V. barriers, and antimicrobial agents. Various antimicrobial agents, such as nitrates and benzoic acids, are incorporated into food packaging formulations. Consumers demand natural antimicrobials over chemical/synthetic ones, such as bacteriocins, bacteriophages, and essential oils. Bacteriophages (viruses) have emerged as a feasible option for decontaminating and eliminating infections from food sources. Most importantly, these viruses can target specific foodborne pathogens without harming helpful bacteria or infecting humans and livestock. Fortifying bacteriophages into food packaging films will not only kill specific food microorganisms but has also evolved as a new weapon to combat antimicrobial-resistant (AMR) issues. The present review summarises recent developments in active antimicrobial packaging focused particularly on bacteriophage food packaging applications and advantages, drawbacks, and future trends for active food packaging.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bacterial Pathogens in Food and Their Control by Bacteriophages;Advances in Environmental Engineering and Green Technologies;2024-01-17

2. Pathogenicity of Vibrio harveyi and its biocontrol using bacteriophages;Systems Microbiology and Biomanufacturing;2023-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3