Abstract
The major objectives of this study were to investigate the effects of silver nanoparticles– gelatin (AgNPs) on the physical and chemical properties of gelatin/alginate (Gel/Alg) scaffolds and the bone-promoting effect of AgNP–Gel/Alg scaffolds. Gel/Alg scaffolds consisting of 0 μM, 200 μM, 400 μM, and 600 μM AgNPs were prepared. SEM was used to evaluate the physical properties of the scaffolds. A CCK-8 assay was performed to determine the cell proliferation activity, and Micro-CT and histological analysis were used to assess the osteogenic effect. The pore size, porosity, and the water absorption and degradation rates of AgNP–Gel/Alg scaffolds were found to be increased compared with those of Gel/Alg scaffolds (control group). CCK-8 showed that cell proliferation activity in the 200 μM group was significantly higher than that in the control group. Micro-CT analysis showed that there was more new bone around AgNP–Gel/Alg than the control group, and the amount of bone formation in the 200 μM group was significantly higher than that in the other groups. Masson staining showed that numerous collagen fibers had proliferated around the AgNP–Gel/Alg scaffold and tended to thicken over time. AgNP–Gel/Alg scaffolds promoted the repair of skull defects in New Zealand rabbits and exerted a marked osteogenic effect in vivo. The 200 μM AgNP–Gel/Alg scaffold was shown to be more suitable for bone tissue engineering materials.
Funder
Shenyang Science and Technology Project
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献