Evolution of Elements on Electrode Surfaces in Gas-Insulated Systems under Electrical Heating

Author:

Sun Jixing,Zhang Kun,Hu Kaixuan,Liu Jiyong,Tian Yu,Wang Xin,Yan Shengchun

Abstract

Accidents always occur in gas-insulated switchgears (GIS) and gas-insulated lines (GIL) since filmed joint electrodes are produced when internal gases react with the electrode’s surface when there is a discharge or when internal electricals overheat. To solve the problem, this paper analyzed the evolution of elements on the contact electrode. The reaction of the SF6 and electrode’s surface under breakdown currents and overheating conditions was obtained, and the discharge time and discharge current effects upon the transfer of the element were proposed. It was found that the mobility of the F element on the electrode’s surface typically increases after electrical heating. The number of interruptions and short-circuit currents are important factors affecting the transfer of the F element to the electrode. The flashover current is the essential factor that accelerates the transfer of the F element to insulating materials. Frequent switching is a main factor that accelerates the transfer of the F element to the contact. It was also found that Al has little correlations with the breaking process, and metal fluorides become the main components on the electrode’s surface under discharge heating. The research provides a theoretical basis and data support for GIS/GIL surface optimization treatments and the improvement of fault detection methods.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Technology Project of National Energy Group

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3