Effect of Thermal Oxygen Conditions on the Long-Term Aging Behavior of High-Viscosity Modified Bitumen

Author:

Xing Chengwei12,Qin Juze3,Li Mingchen4,Jin Tian4ORCID

Affiliation:

1. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, South 2nd Ring Road Middle Section, Xi’an 710064, China

2. School of Highway, Chang’an University, South 2nd Ring Road Middle Section, Xi’an 710064, China

3. Changjiang Survey, Planning, Design and Research Co., Ltd., 1863 Jiefang Ave., Wuhan 430010, China

4. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 200080, China

Abstract

High-viscosity modified bitumen is affected by a complex thermal oxygen environment during long-term service. However, the existing standard long-term thermal oxygen aging test cannot fully simulate the effect of different thermal oxygen conditions on the aging of high-viscosity modified bitumen. In this study, on the basis of the standard pressure aging vessel test, high-viscosity modified bitumen was aged under different oxygen conditions through adjusting test parameters. Then, the analysis of the complex moduli, phase angles, and creep and recovery properties was conducted to evaluate the rheological properties of high-viscosity modified bitumen before and after aging. Moreover, gel permeation chromatography was performed to evaluate the molecular size distribution of high-viscosity modifiers during aging. The results indicate that aging improves the modulus of high-viscosity modified bitumen and changes the phase angle of that. Temperature, pressure, and time are the factors affecting the high-temperature sensitivity and viscoelastic properties of high-viscosity modified bitumen. With respect to the creep and recovery property, different high-viscosity modified bitumen exhibits different aging characteristics with the change of thermal oxygen conditions. Gel-permeation-chromatography results directly illustrate that thermal oxygen conditions influence the degradation of high-viscosity modifiers at the initial stage of long-term aging, which is the key factor affecting the rheological properties of high-viscosity modified bitumen.

Funder

National Natural Science Foundation of China

the Young Talent Fund of University Association for Science and Technology in Shaanxi, China

the Key Research and Development Program of Shaanxi, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3