Effect of Cyclic Loading on the Surface Microstructure Evolution in the Pearlitic Rail

Author:

Shi Tong1,Liu Jiapeng1,Yang Guang1,Liu Ao12,Liu Fengshou1

Affiliation:

1. Metals and Chemistry Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China

2. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

The effects of cyclic loading on the surface microstructure evolution of different contact locations in a used pearlitic rail were studied. Microstructures were analyzed using Scanning Electron Microscopy (SEM). Meanwhile, grain boundaries and crystallographic orientations were explored via Electron Backscatter Diffraction (EBSD). At last, wheel–rail contact probabilities and forces were calculated using rail profiles. The results indicate that the side wear region located in the gauge face was 71.5% in the high-angle grain boundaries (HAGBs) fraction, 0.88 in the Kernel Average Misorientation (KAM) value, 36% in the recrystallization (REX) fraction, and had a predominant orientation in grains. The rolling contact fatigue (RCF) region situated at the gauge corner was 66.3% in the HAGBs fraction, 0.92 in the KAM value, 33% in the REX fraction, and was mis-orientated in grains. The region located at the edge of the running band was 60.7% in the low-angle grain boundaries (LAGBs) fraction, 0.97 in the KAM value, 12% in the REX fraction, and was mis-orientated in grains. Continuous dynamic recrystallization (cDRX) took place in wear and RCF regions during the cyclic rolling contact loading, creating ultra-fine grains with a transformation from LAGBs to HAGBs, lower KAM values, and more REX. Grains oriented along [111] parallel to the vertical direction in the wear region were influenced by the dominant normal force, while grains in the RCF region were non-oriented, which was attributed to large lateral and vertical forces of similar magnitudes.

Funder

National Natural Science Foundation of China

Research and Development Fund Project of China State Railway Group Corporation Limited

Research and Development Fund Project of China Academy of Railway Sciences Corporation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3