Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review

Author:

Alias Aisyah HumairaORCID,Norizan Mohd NurazziORCID,Sabaruddin Fatimah AthiyahORCID,Asyraf Muhammad Rizal MuhammadORCID,Norrrahim Mohd Nor FaizORCID,Ilyas Ahmad RushdanORCID,Kuzmin Anton M.ORCID,Rayung Marwah,Shazleen Siti ShazraORCID,Nazrin Asmawi,Sherwani Shah Faisal KhanORCID,Harussani Muhammad MoklisORCID,Atikah Mahamud Siti Nur,Ishak Mohamad Ridzwan,Sapuan Salit Mohd,Khalina Abdan

Abstract

In the recent past, significant research effort has been dedicated to examining the usage of nanomaterials hybridized with lignocellulosic fibers as reinforcement in the fabrication of polymer nanocomposites. The introduction of nanoparticles like montmorillonite (MMT) nanoclay was found to increase the strength, modulus of elasticity and stiffness of composites and provide thermal stability. The resulting composite materials has figured prominently in research and development efforts devoted to nanocomposites and are often used as strengthening agents, especially for structural applications. The distinct properties of MMT, namely its hydrophilicity, as well as high strength, high aspect ratio and high modulus, aids in the dispersion of this inorganic crystalline layer in water-soluble polymers. The ability of MMT nanoclay to intercalate into the interlayer space of monomers and polymers is used, followed by the exfoliation of filler particles into monolayers of nanoscale particles. The present review article intends to provide a general overview of the features of the structure, chemical composition, and properties of MMT nanoclay and lignocellulosic fibers. Some of the techniques used for obtaining polymer nanocomposites based on lignocellulosic fibers and MMT nanoclay are described: (i) conventional, (ii) intercalation, (iii) melt intercalation, and (iv) in situ polymerization methods. This review also comprehensively discusses the mechanical, thermal, and flame retardancy properties of MMT-based polymer nanocomposites. The valuable properties of MMT nanoclay and lignocellulose fibers allow us to expand the possibilities of using polymer nanocomposites in various advanced industrial applications.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3