Cu–Ethanolamine Nanozymes Promote Urushiol Oxidation of Lacquer

Author:

Zhang Yan1,Zhou Ying1,Ban Lishou2,Tang Tian1ORCID,Liu Qian3,Liu Xijun4ORCID,He Jia5ORCID

Affiliation:

1. School of Art and Design, Tianjin University of Technology, Tianjin 300384, China

2. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

3. Institute for Advanced Study, Chengdu University, Chengdu 610106, China

4. Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China

5. School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract

In order to control the production cost of lacquer products, Cu–ethanolamine nanozymes were synthesized to simulate laccase to catalyze the oxidation and polymerization of urushiol. First-principles calculation results indicate that the D-band center of Cu center in the nanozymes was closer to the Fermi level than that of laccase, so Cu–ethanolamine was more conducive to the adsorption of substrate. The activation energy of Cu-ethanolamine catalyzed the oxidation of urushiol was significantly lower than that of laccase. Therefore, we inferred that the synthesized Cu–ethanolamine had a better catalytic effect on urushiol and was more conducive to paint film drying. By comprehensive comparison, the drying characteristics of the Cu–ethanolamine and raw lacquer with a 1:20 ratio are found to be closest to those of the raw lacquer, and the drying time is significantly shortened. The reaction results of the drying process performance test on the sample indicate that the composite lacquer can achieve the market-desired effect and performance requirements of the paint process.

Funder

National Natural Science Foundation of China

TianHe Qingsuo open research fund of TSYS in 2022 & NSCC-TJ

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3