Proof of Concept for Pultrusion Control by Cure Monitoring Using Resonant Ultrasound Spectroscopy

Author:

Pommer ChristianORCID,Sinapius MichaelORCID

Abstract

The increasing demand for low cost consistent quality composite materials, especially of the automotive industry, creates the necessity for fast high quality processes. Pultrusion is one of the processes that can fulfill this demand. While the process is highly automated, manufacturing parameters still have to be chosen manually. The choice of line speed, mould temperature and injection pressure is based on best practice and therefore requires manual optimization that results in cost intensive manufacturing errors and suboptimal machine productivity. This paper presents a possible solution for this problem by providing an on-line cure monitoring approach that allows to overcome this challenge. Resonant Ultrasonic Spectroscopy (RUS) shows a high potential for in-line cure monitoring inside the pultrusion tool. RUS has been adapted for the first time in a pultrusion process. This paper focuses on the successful application of this technique to control the pultrusion process based on the state of cure of the material inside of the tool. As one of the only techniques for in-line cure monitoring which can be used continuously in closed tools despite high abrasion, it provides a new insight into the pultrusion process.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3