Power Quality Improvement Using Distributed Power Flow Controller with BWO-Based FOPID Controller

Author:

Goud B. SrikanthORCID,Reddy Ch. RamiORCID,Bajaj MohitORCID,Elattar Ehab E.ORCID,Kamel SalahORCID

Abstract

The integration of hybrid renewable energy sources (HRESs) into the grid is currently being encouraged to meet the increasing demand for electric power and reduce fossil fuels which are causing environmental-related problems. Integration of HRESs into the grid can create some power quality (PQ) problems. To mitigate PQ problems and improve the performance of grid-connected HRESs some flexible devices should be used. This paper presents a distributed power flow controller (DPFC), as a type of flexible device to mitigate some PQ problems, including voltage sag, swell, disruptions, and eliminating the harmonics in a hybrid power system (HPS). The HPS presented in this work comprises a photo voltaic (PV) system, wind turbine (WT) and battery energy storage system (BESS). As a result, black widow optimization (BWO) with DPFC with real and reactive power (DPFC-PQ) is built in this paper to solve the PQ issues in HRES systems. The main aim of the work is to mitigate PQ problems and compensate for load demand in the HRES scheme. The controller used to drive this DPFC-PQ is a fractional-order PID (FOPID) controller optimized by the black widow optimization (BWO) technique. To assess the capability of BWO in fine-tuning the FOPID controller parameters, twelve optimization techniques were presented: P&O, PSO, Cuckoo, GA, GSA, BBO, Whale, ESA, RFA, ASO, and EVORFA. Additionally, a comparison between the FOPID controller and the classical PI controller is introduced. The results showed that the proposed BWO-FOPID controller for DFPC had mitigated the PQ problems in grid-connected HRESs. The system’s performance with the presented BWO-FOPID controller is compared with eleven optimization techniques used to optimize the FOPID controller and also compared with the conventional PI controller. The design of the proposed system is implemented in the MATLAB/Simulink platform and performances were analyzed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3