Network Security Node-Edge Scoring System Using Attack Graph Based on Vulnerability Correlation

Author:

Shin Gun-Yoon,Hong Sung-Sam,Lee Jung-Sik,Han In-Sung,Kim Hwa-Kyung,Oh Haeng-Rok

Abstract

As network technology has advanced, and as larger and larger quantities of data are being collected, networks are becoming increasingly complex. Various vulnerabilities are being identified in such networks, and related attacks are continuously occurring. To solve these problems and improve the overall quality of network security, a network risk scoring technique using attack graphs and vulnerability information must be used. This technology calculates the degree of risk by collecting information and related vulnerabilities in the nodes and the edges existing in the network-based attack graph, and then determining the degree of risk in a specific network location or the degree of risk occurring when a specific route is passed within the network. However, in most previous research, the risk of the entire route has been calculated and evaluated based on node information, rather than edge information. Since these methods do not include correlations between nodes, it is relatively difficult to evaluate the risk. Therefore, in this paper, we propose a vulnerability Correlation and Attack Graph-based node-edge Scoring System (VCAG-SS) that can accurately measure the risk of a specific route. The proposed method uses the Common Vulnerability Scoring System (CVSS) along with node and edge information. Performing the previously proposed arithmetic evaluation of confidentiality, integrity, and availability (CIA) and analyzing the correlation of vulnerabilities between each node make it possible to calculate the attack priority. In the experiment, the risk scores of nodes and edges and the risk of each attack route were calculated. Moreover, the most threatening attack route was found by comparing the attack route risk. This confirmed that the proposed method calculated the risk of the network attack route and was able to effectively select the network route by providing the network route priority according to the risk score.

Funder

the Defense Acquisition Program Administration and Agency for Defense Development under the contract cybercenter

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3