An Experimental Demonstration of MIMO C-OOK Scheme Based on Deep Learning for Optical Camera Communication System

Author:

Nguyen Van Linh,Tran Duc Hoang,Nguyen HuyORCID,Jang Yeong MinORCID

Abstract

Currently, wireless communication systems that use radio frequency are commonly deployed, for example, mobile communication systems, satellite systems, and the Internet of Things (IoT) systems. Based on their easy installation, wireless communication systems have benefits over other wired communication systems. However, using high frequencies to transfer data via wireless communication can hold significant risks for human health. Several researchers have studied this topic using visible light instead of Radio Frequency (RF) waveforms in communication systems. Many potential approaches are relevant in this regard, i.e., visible light communication, light fidelity, free-space optical, and optical camera communication. Artificial intelligence is also influencing the future of industry and people and is used to solve complex problems, create intelligent solutions, and replace human intelligence as the driving force behind emerging technologies such as big data, smart factories, and the IoT. In this paper, we proposed the architecture of the MIMO C-OOK (Multiple-Input Multiple-Output Camera On–Off Keying) scheme, which uses a convolutional neural network for light-emitting diode detection and a deep learning neural network for threshold predictions considering long-distance communication and mobility support. Our suggested method aimed to improve the performance of the traditional camera on–off keying scheme by increasing data rate, communication distance, and low bit error rate. Our suggested technique may achieve a communication distance of up to 22 m with a low error rate when considering the mobility impact (2 m/s, i.e., walking velocity) by controlling the exposure time, focal length, and employing Forward Error Correction code.

Funder

Institute for Information and Communications Technology Promotion

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3