Mechanical Characterization of Industrial Waste Materials as Mineral Fillers in Asphalt Mixes: Integrated Experimental and Machine Learning Analysis

Author:

Tiwari NitinORCID,Baldo NicolaORCID,Satyam NeelimaORCID,Miani MatteoORCID

Abstract

In this study, the effect of seven industrial waste materials as mineral fillers in asphalt mixtures was investigated. Silica fume (SF), limestone dust (LSD), stone dust (SD), rice husk ash (RHA), fly ash (FA), brick dust (BD), and marble dust (MD) were used to prepare the asphalt mixtures. The obtained experimental results were compared with ordinary Portland cement (OPC), which is used as a conventional mineral filler. The physical, chemical, and morphological assessment of the fillers was performed to evaluate the suitability of industrial waste to replace the OPC. The volumetric, strength, and durability of the modified asphalt mixes were examined to evaluate their performance. The experimental data have been processed through artificial neural networks (ANNs), using k-fold cross-validation as a resampling method and two different activation functions to develop predictive models of the main mechanical and volumetric parameters. In the current research, the two most relevant parameters investigated are the filler type and the filler content, given that they both greatly affect the asphalt concrete mechanical performance. The asphalt mixes have been optimized by means of the Marshall stability analysis, and after that, for each different filler, the optimum asphalt mixtures were investigated by carrying out Indirect tensile strength, moisture susceptibility, and abrasion loss tests. The moisture sensitivity of the modified asphalt mixtures is within the acceptable limit according to the Indian standard. Asphalt mixes modified with the finest mineral fillers exhibited superior stiffness and cracking resistance. Experimental results show higher moisture resistance in calcium-dominant mineral filler-modified asphalt mixtures. Except for mixes prepared with RHA and MD (4% filler content), all the asphalt mixtures considered in this study show MS values higher than 10 kN, as prescribed by Indian regulations. All the values of the void ratio for each asphalt mix have been observed to range between 3–5%, and MQ results were observed between 2 kN/mm–6 kN/mm, which falls within the acceptable range of the Indian specification. Partly due to implementing a data-augmentation strategy based on interpolation, the ANN modeling was very successful, showing a coefficient of correlation averaged over all output variables equal to 0.9967.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference70 articles.

1. The Paris Agreementhttps://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

2. Action on Climate and SDGshttps://unfccc.int/topics/action-on-climate-and-sdgs/action-on-climate-and-sdgs

3. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review

4. Enhanced performance for aggressive environments of green concrete composites reinforced with waste carpet fibers and palm oil fuel ash

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3