Nonlinear Modeling and Analysis of Wound-Rotor Synchronous Starter/Generator (WRSSG) in Generating State for More Electric Aircraft

Author:

Du Haoran1ORCID,Liu Yongzhi2,Li Tianxing2,Zhu Peirong1

Affiliation:

1. Graduate School, Air Force Engineering University, Xi’an 710038, China

2. Aviation Engineering School, Air Force Engineering University, Xi’an 710038, China

Abstract

The nonlinear modeling and analyzing of wound-rotor synchronous starter/generators (WRSSGs) plays a vital role in the analysis and monitoring of aircraft power systems. Moreover, they are of great significance with regard to the establishment of a future aircraft smart grid. However, owing to its nonlinear, high-dimensional, and strong coupling characteristics, this modeling has always remained in the frequency domain stage and the progress of more intuitive time domain modeling has been slow. This paper presents a nonlinear model of a WRSSG in a generating state. When the WRSSG is in power generation mode, most cases indicate that the aircraft is in flight mode. The establishment of the nonlinear model of the system in the power generation state is of great significance for the research of the health management and state monitoring of the aircraft power system and can improve the safety and reliability of the aircraft during flight. The model uses FE analysis and neural network to solve the nonlinear problem of the motor in the system and uses the improved variable parameter average model to solve the nonlinear problem of the rotating rectifier. According to the principle of signal transmission, a time domain model for the whole system is developed. Finally, the model is compiled by the RT-LAB real-time simulator. The nonlinear model performs well when compared with FE analysis results and tested against the MIL-STD-704F standard. The proposed nonlinear model and analysis results can be used for the condition monitoring and fault diagnosis of aircraft power systems. The hardware-in-the-loop test platform based on an accurate nonlinear model is a feasible means to study the failure of expensive equipment, and it can aid the study of irreversible failures of equipment at a low cost.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3