Data Protection Issues in Automated Decision-Making Systems Based on Machine Learning: Research Challenges

Author:

Christodoulou Paraskevi1ORCID,Limniotis Konstantinos12ORCID

Affiliation:

1. School of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia 2220, Cyprus

2. Hellenic Data Protection Authority, Kifissias 1-3, 11523 Athens, Greece

Abstract

Data protection issues stemming from the use of machine learning algorithms that are used in automated decision-making systems are discussed in this paper. More precisely, the main challenges in this area are presented, putting emphasis on how important it is to simultaneously ensure the accuracy of the algorithms as well as privacy and personal data protection for the individuals whose data are used for training the corresponding models. In this respect, we also discuss how specific well-known data protection attacks that can be mounted in processes based on such algorithms are associated with a lack of specific legal safeguards; to this end, the General Data Protection Regulation (GDPR) is used as the basis for our evaluation. In relation to these attacks, some important privacy-enhancing techniques in this field are also surveyed. Moreover, focusing explicitly on deep learning algorithms as a type of machine learning algorithm, we further elaborate on one such privacy-enhancing technique, namely, the application of differential privacy to the training dataset. In this respect, we present, through an extensive set of experiments, the main difficulties that occur if one needs to demonstrate that such a privacy-enhancing technique is, indeed, sufficient to mitigate all the risks for the fundamental rights of individuals. More precisely, although we manage—by the proper configuration of several algorithms’ parameters—to achieve accuracy at about 90% for specific privacy thresholds, it becomes evident that even these values for accuracy and privacy may be unacceptable if a deep learning algorithm is to be used for making decisions concerning individuals. The paper concludes with a discussion of the current challenges and future steps, both from a legal as well as from a technical perspective.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3