Detection of Contamination and Failure in the Outer Race on Ceramic, Metallic, and Hybrid Bearings through AI Using Magnetic Flux and Current

Author:

Cureño-Osornio Jonathan1,Díaz-Saldaña Geovanni1ORCID,Osornio-Rios Roque A.1ORCID,Dunai Larisa2ORCID,Sava Lilia3,Antonino-Daviu Jose A.4ORCID,Zamudio-Ramírez Israel1

Affiliation:

1. Engineering Faculty, San Juan del Río Campus, Universidad Autónoma de Querétaro (UAQ), Av. Río Moctezuma 249, San Juan del Río 76807, Mexico

2. Department Graphic Engineering, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain

3. Faculty of Electronics and Telecommunications, Technical University of Moldova (UTM), MD-2004 Chisinau, Moldova

4. Instituto Tecnológico de la Energía, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain

Abstract

Bearings are one of the most essential elements in an induction motor, and they are built with different materials and constructions according to their application. These components are usually one of the most failure-prone parts of an electric motor, so correct and accurate measurements, instrumentation, and processing methods are required to prevent and detect the presence of different failures. This work develops a methodology based on the fusion of current and magnetic stray flux signals, calculation of statistical and non-statistical indicators, genetic algorithms (GAs), linear discriminant analysis (LDA), and neural networks. The proposed approach achieves a diagnostic effectiveness of 99.8% for detecting various damages in the outer race at 50 Hz frequency and 96.6% at 60 Hz. It also demonstrates 99.8% effectiveness for detecting damages in the presence of contaminants in lubrication at 50 Hz and 97% at 60 Hz. These results apply across metallic, ceramic, and hybrid bearings.

Funder

Spanish ‘Ministerio de Ciencia e Innovación’, Agencia Estatal de Investigación and FEDER program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3