Affiliation:
1. School of Information Science and Technology, Fudan University, Shanghai 200438, China
Abstract
This paper presents a minimally invasive surgical robot system for endoluminal gastrointestinal endoscopy through natural orifices. In minimally invasive gastrointestinal endoscopic surgery (MIGES), surgical instruments need to pass through narrow endoscopic channels to perform highly flexible tasks, imposing strict constraints on the size of the surgical robot while requiring it to possess a certain gripping force and flexibility. Therefore, we propose a novel minimally invasive robot system with advantages such as compact size and high precision. The system consists of an endoscope, two compact flexible continuum mechanical arms with diameters of 3.4 mm and 2.4 mm, respectively, and their driving systems, totaling nine degrees of freedom. The robot’s driving system employs bidirectional ball-screw-driven motion of two ropes simultaneously, converting the choice of opening and closing of the instrument’s end into linear motion, facilitating easier and more precise control of displacement when in position closed-loop control. By means of coordinated operation of the terminal surgical tools, tasks such as grasping and peeling can be accomplished. This paper provides a detailed analysis and introduction of the system. Experimental results validate the robot’s ability to grasp objects of 3 N and test the system’s accuracy and payload by completing basic operations, such as grasping and peeling, thereby preliminarily verifying the flexibility and coordination of the robot’s operation in a master–slave configuration.
Funder
National Key R&D Program of China