Intelligent Insights for Manufacturing Inspections from Efficient Image Recognition

Author:

Eddy DouglasORCID,White Michael,Blanchette Damon

Abstract

Many complex electromechanical assemblies that are essential to the vital function of certain products can be time-consuming to inspect to a sufficient level of certainty. Examples include subsystems of machine tools, robots, aircraft, and automobiles. Out-of-tolerance conditions can occur due to either random common-cause variability or undetected nonstandard deviations, such as those posed by debris from foreign objects. New methods need to be implemented to enable the utilization of detection technologies in ways that can significantly reduce inspection efforts. Some of the most informative three-dimensional image recognition methods may not be sufficiently reliable or versatile enough for a wide diversity of assemblies. It can also be an extensive process to train the recognition on all possible anomalies comprehensively enough for inspection certainty. This paper introduces a methodical technique to implement a semiautonomous inspection system and its algorithm, introduced in a prior publication, that can learn manufacturing inspection inference from image recognition capabilities. This fundamental capability accepts data inputs that can be obtained during the image recognition training process followed by machine learning of the likely results. The resulting intelligent insights can inform an inspector of the likelihood that an assembly scanned by image recognition technology will meet the manufacturing specifications. An experimental design is introduced to generate data that can train and test models with a realistic representation of manufacturing cases. A benchmark case study example is presented to enable comparison to models from manufacturing cases. The fundamental method is demonstrated using a realistic assembly manufacturing example. Recommendations are given to guide efforts to deploy this entire methodical technique comprehensively.

Funder

industry members of the National Science Foundation’s Industry-University Cooperative Research Center for e-Design supported by NSF

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3