Fault Detection for High-Speed Trains Using CCA and Just-in-Time Learning

Author:

Zheng Hong,Zhu KeyuanORCID,Cheng Chao,Fu Zhaowang

Abstract

Online monitors of the running gears systems of high-speed trains play critical roles in ensuring operational safety and reliability. Status signals collected from high-speed train running gears are very complex regarding working environments, random noises and many other real-world constraints. This paper proposed fault detection (FD) models using canonical correlation analysis (CCA) and just-in-time learning (JITL) to process scalar signals of high-speed train gears, named as CCA-JITL. After data preprocessing and normalization, CCA transforms covariance matrices of high-dimension historical data into low-dimension subspaces and maximizes correlations between the most important latent dimensions. Then, JITL components formulate local FD models which utilize subsets of testing samples with larger Euclidean distances to training data. A case study introduced a novel system design of an online FD architecture and demonstrated that CCA-JITL FD models significantly outperformed traditional CCA models. The approach is applicable to other dimension reduction FD models such as PCA and PLS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3