Research on the Power Loss of High-Speed and High-Load Ball Bearing for Cryogenic Turbopump

Author:

Zhang Wenhu,Zhang Chaojie,Miao Xusheng,Li Liang,Deng Sier

Abstract

This paper studies the lubrication characteristics of ball bearings for cryogenic turbopumps. First, the frictional coefficients between 440C and a Ag coating, 440C and solid PTFE (polytetrafluoroethylene), and 440C and a PTFE coating in LN2 (liquid nitrogen) are obtained using a ball-on-disk testing machine under a high sliding speed in the range of 0 to 8 m/s and a high contact stress in the range of 2.5 to 3.5 GPa. Dynamic and power loss models of high-speed and high-load ball bearings are established to study the key factors affecting the heat generation characteristics. In order to verify the correctness of these two theoretical models, a coupled fluid-thermal finite element model is built to evaluate the temperatures of the outer ring under different bearing speeds, which are then proved by experiments with ball bearings for cryogenic turbopumps. The results show that the power loss due to the spinning-sliding of the ball and the churning and drag of LN2 account for more than 80% of the total power loss; the spin-roll ratio of the ball on the inner raceway is a key indicator for this type of ball bearing, and the relatively small radial clearance and contact angle are suggested. Both of the proposed theoretical models have sufficient accuracy and can be used in the performance evaluation and optimization design of bearings.

Funder

Youth Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference37 articles.

1. Nosaka, M., and Kato, T. (2013). Tribology—Fundamentals and Advancements, IntechOpen.

2. Modern Engineering for Design of Liquid-Propellant Rocket Engines;Progress in Astronautics and Aeronautics,1992

3. NASA (2022, October 23). Liquid Rocket Engine Turbopump Bearing, NASA SP-8048, Available online: https://ntrs.nasa.gov/api/citations/19710018535/downloads/19710018535.pdf.

4. Gibson, H.G. (2019). Design Guide for Bearings Used in Cryogenic Turbopumps and Test Rigs, NASA Technical Reports Server. NTRS 20200000047.

5. Gibson, H.G., Thom, R., Moore, C., and Haluck, D. (2010, January 3–7). History of Space Shuttle Main Engine Turbopump Bearing Testing at the Marshall Space Flight Center. Proceedings of the 57th JANNAF Joint Propulsion Meeting, Colorado Springs, CO, USA.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3