Influence and Suppression Method of the Eddy Current Effect on the Suspension System of the EMS Maglev Train

Author:

Yang Qing,Chi Zhenxiang,Wang Lianchun

Abstract

The suspension system of the EMS (Electro-Magnetic Suspension) medium-and-low-speed maglev train is affected by the eddy current effect when the train is in motion. This is a crucial problem related to the improvement of train operation speed. In this article, this phenomenon is analyzed and the method of suppressing the eddy current effect is put forward. Firstly, theoretical analysis and experimental verification are carried out. It is worth mentioning that the experimental data, which thoroughly show how the suspension current changes with the maglev train speed under the influence of the eddy current effect, are collected and published for the first time, which strongly confirms the accuracy of the theoretical analysis. Secondly, an improved scheme to suppress the influence of the eddy current effect is proposed from the perspective of the rail structure for the first time and simulation results verify the effectiveness of the improved scheme. This research makes important progress on the improvement of the rail used in the maglev train.

Funder

scheme design and simulation of suspension system

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference28 articles.

1. Fundamental Design and Modelling of the Superconducting Magnet for the High-Speed Maglev: Mechanics, Electromagnetics, and Loss Analysis during Instability

2. Robust Controller Design for Maglev Suspension Systems Based on Improved Suspension Force Model

3. Control Approaches for Magnetic Levitation Systems and Recent Works on Its Controllers’ Optimization: A Review;Abdalhadi;Appl. Model. Simul.,2021

4. Static and Dynamic Modeling of the Electromagnets of the Maglev Vehicle Transrapid

5. Summary of Changsha Maglev Express train;Tong;Electr. Locomot. Mass Transit Veh.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3