Investigation of the Electrical Impedance Signal Behavior in Rolling Element Bearings as a New Approach for Damage Detection

Author:

Becker-Dombrowsky Florian Michael1ORCID,Schink Johanna1,Frischmuth Julian1,Kirchner Eckhard1ORCID

Affiliation:

1. Department for Mechanical Engineering, Institute for Product Development and Machine Elements, Technical University of Darmstadt, 64287 Darmstadt, Germany

Abstract

The opportunities of impedance-based condition monitoring for rolling bearings have been shown earlier by the authors: Changes in the impedance signal and the derived features enable the detection of pitting damages. Localizing and measuring the pitting length in the raceway direction is possible. Furthermore, the changes in features behavior are physically explainable. These investigations were focused on a single bearing type and only one load condition. Different bearing types and load angles were not considered yet. Thus, the impedance signals and their features of different bearing types under different load angles are investigated and compared. The signals are generated in fatigue tests on a rolling bearing test rig with conventional integrated vibration analysis based on structural borne sound. The rolling bearing impedance is gauged using an alternating current measurement bridge. Significant changes in the vibration signals mark the end of the fatigue tests. Therefore, comparing the response time of the impedance can be compared to the vibration signal response time. It can be shown that the rolling bearing impedance is an instrument for condition monitoring, independently from the bearing type. In case of pure radial loads, explicit changes in the impedance signal are detectable, which indicate a pitting damage. Under combined loads, the signal changes are detectable as well, but not as significant as under radial load. Damage-indicating signal changes occur later compared to pure radial loads, but nevertheless enable an early detection. Therefore, the rolling bearing impedance is an instrument for pitting damage detection, independently from bearing type and load angle.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Reference51 articles.

1. Davies, A. (1998). Handbook of Condition Monitoring, Chapman & Hall.

2. Vibration and current monitoring for detecting airgap eccentricity in large induction motors;Cameron;IEE Proc. B Electr. Power Appl.,1986

3. A review on machinery diagnostics and prognostics implementing condition-based maintenance;Jardine;Mech. Syst. Signal Process.,2006

4. Schaeffler Monitoring Services GmbH (2019). Condition Monitoring Praxis: Handbuch zur Schwingungs-Zustandsüberwachung von Maschinen und Anlagen, Vereinigte Fachverlage GmbH. 1. Auflage.

5. Harris, T.A. (2001). Rolling Bearing Analysis, Wiley. [4th ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3