A Novel Impact Feature Extraction Method Based on EMD and Sparse Decomposition for Gear Local Fault Diagnosis

Author:

Liu Zhongze,Ding Kang,Lin Huibin,He Guolin,Du Canyi,Chen ZhuyunORCID

Abstract

Sparse decomposition has been widely used in gear local fault diagnosis due to its outstanding performance in feature extraction. The extraction results depend heavily on the similarity between dictionary atoms and fault feature signal. However, the transient impact signal aroused by gear local defect is usually submerged in meshing harmonics and noise. It is still a challenging task to construct high-quality impact dictionary for complex actual signal. To handle this issue, a novel impact feature extraction method based on Empirical Mode Decomposition (EMD) and sparse decomposition is proposed in this paper. Firstly, EMD is employed to adaptively decompose the original signal into several Intrinsic Mode Functions (IMFs). The high-frequency resonance component is separated from meshing harmonics and part of the noise. Then, the IMF with the prominent impact features is selected as the Main Intrinsic Mode Function (MIMF) based on the kurtosis. Accordingly, the modal parameters required for impact dictionary are identified from the MIMF by correlation filtering. Finally, the transient impact component is extracted from the original signal by Match Pursuit (MP). The proposed method was adequately evaluated by a gear local fault simulation signal, and the single-stage gearbox and five-speed transmission experiments. The effectiveness and superiority of the proposed method is validated by comparison with other feature extraction techniques.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province-China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3