Abstract
Sparse decomposition has been widely used in gear local fault diagnosis due to its outstanding performance in feature extraction. The extraction results depend heavily on the similarity between dictionary atoms and fault feature signal. However, the transient impact signal aroused by gear local defect is usually submerged in meshing harmonics and noise. It is still a challenging task to construct high-quality impact dictionary for complex actual signal. To handle this issue, a novel impact feature extraction method based on Empirical Mode Decomposition (EMD) and sparse decomposition is proposed in this paper. Firstly, EMD is employed to adaptively decompose the original signal into several Intrinsic Mode Functions (IMFs). The high-frequency resonance component is separated from meshing harmonics and part of the noise. Then, the IMF with the prominent impact features is selected as the Main Intrinsic Mode Function (MIMF) based on the kurtosis. Accordingly, the modal parameters required for impact dictionary are identified from the MIMF by correlation filtering. Finally, the transient impact component is extracted from the original signal by Match Pursuit (MP). The proposed method was adequately evaluated by a gear local fault simulation signal, and the single-stage gearbox and five-speed transmission experiments. The effectiveness and superiority of the proposed method is validated by comparison with other feature extraction techniques.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province-China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献