LSTM-Based Condition Monitoring and Fault Prognostics of Rolling Element Bearings Using Raw Vibrational Data
Author:
Affiliation:
1. Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan
2. Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
Abstract
Funder
2023 Research Fund of the University of Ulsan
Publisher
MDPI AG
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Link
https://www.mdpi.com/2075-1702/11/5/531/pdf
Reference56 articles.
1. A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management;Kandukuri;Renew. Sustain. Energy Rev.,2016
2. Review of data-driven prognostics and health management techniques: Lessons learned from PHM data challenge competitions;Huang;Mach. Fail. Prev. Technol.,2017
3. Model-based prognosis for hybrid systems with mode dependent degradation behaviors;Yu;IEEE Trans. Ind. Electron.,2014
4. A review on machinery diagnostics and prognostics implementing condition-based maintenance;Jardine;Mech. Syst. Signal Process.,2006
5. Analysis of acoustic emission signals and monitoring of machining processes;Govekar;Ultrasonics,2000
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Editorial for Special Issue “10th Anniversary of Machines—Feature Papers in Fault Diagnosis and Prognosis”;Machines;2024-09-01
2. A Fault Prediction Method for CNC Machine Tools Based on SE-ResNet-Transformer;Machines;2024-06-18
3. Evaluation Metrics: A Review of Decision Methods for Vibration Based Condition Monitoring;2024 35th Irish Signals and Systems Conference (ISSC);2024-06-13
4. Fault Detection in Machine Bearings Using Deep Learning;SAE Technical Paper Series;2024-06-01
5. Review of Data Processing Methods Used in Predictive Maintenance for Next Generation Heavy Machinery;Data;2024-05-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3