Active Control Method for Rotor Eccentric Vibration of High-Speed Motor Based on Least Squares Support Vector Machine

Author:

Wang Liheng,Zhuang Ming,Yuan Kai

Abstract

Aiming at the problems of large active control errors and long control times in the active control method for high-speed motor rotor eccentric vibration, an active control method for high-speed motor rotor eccentric vibration based on a least squares support vector machine was proposed. Firstly, the overall structure of the system and its high-speed rotor were designed. Secondly, by calculating the centrifugal force of the eccentric rotor, the vibration of the relative phase of the rotor position, and the width of the air gap between the rotor and the stator, a mathematical model of the eccentric vibration of the high-speed motor rotor was established. Then, the basic principle of the least squares support vector machine was analyzed, and the control parameters of the eccentric vibration of the high-speed motor rotor were set and filtered. Finally, an active control model of high-speed motor rotor eccentric vibration was constructed, and the optimal solution of the model was obtained by regression algorithm. The experimental results show that the method is effective for the active control of high-speed motor rotor eccentric vibration, the control effect is consistent with the ideal effect, and the control time is short—the longest is only 0.13 s.

Funder

Anhui Provincial Natural Science Foundation

Comprehensive Research Facility for Fusion Technology Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference16 articles.

1. Overview for the Development and Key Technologies of High Speed Motors;Electr. Drive,2020

2. Rerview of key technologies for high-speed motor drive;Chin. J. Electr. Eng.,2022

3. Research onapplication of amorphous materials in high-speed motors for high-altitude aircraft;Micromotor,2021

4. Electromagnetic analysis and parameter optimization of auxiliary magnetic barrier permanent magnet synchronous motor;Micromotor,2022

5. Online monitoring method for rotor demagnetization fault of permanent magnet synchronous machine based on new type of search coil;Power Autom. Equip.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Data Mining, Big Data Analytics and Machine Learning Approaches;Journal of Computing and Natural Science;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3