Abstract
In this paper, a deep learning fault detection and prediction framework combining principal component analysis (PCA) and Informer is proposed to solve the problem of online monitoring of nuclear power valves which is hard to implement. More specifically, PCA plays the role of dimensionality reduction and fault feature extraction. It maps data with multi-dimensional space to low-dimensional space and extracts the main features. At the same time, the T-square and Q statistic thresholds are also provided to realize abnormal status monitoring. Meanwhile, Informer is a long-term series prediction method. It encrypts and decrypts data through the encoder and decoder to train a prediction model. Through the training of fault data, fault prediction can be realized. Experiments based on the sound waves collected from real valves can be continued, which also illustrates the effectiveness of the PCA–Informer model for fault diagnosis and fault prediction of nuclear power valves. Therefore, the online monitoring and maintenance of nuclear valves and other important equipment, without shutting down the nuclear station, can be achieved.
Funder
State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献