Abstract
A Roots pump often exhibits the typical characteristics of high gas pressure in the exhaust port, low pressure at a basic volume and large airflow pulsation at the outlet as a result of gas reflux. In light of this, this study employed Pumplinx software for the numerical calculation of the entire flow field of a two-bladed Roots pump. The effects of the rectangular and curved reflux groove structures on the internal flow field of a Roots pump, especially on the outlet pressure pulsation and flow rate, were unveiled separately. The rectangular reflux groove controlled the angle and thickness, while the curved reflux groove regulated the coordinates of the key points on the Bezier curve. It is worth recognizing that different reflux groove structures were not noticeable in enhancing the inlet measurement flow pattern; reduce the exhaust pressure pulsation, flow pulsation and exhaust section vortex. Interestingly, the rectangular return groove far outweighed the curved groove when optimizing the pressure and flow pulsation when registering the higher flow loss compared to the curved return groove. The merits and demerits of the Q criterion and omega criterion in characterizing the vortex structure of the flow field in the Roots pump were compared by Tecplot software. The omega criterion looked more robust, clear and continuous in revealing the strong and weak vortices in the Roots pump. The outcome of this research work could provide a reference for the study of Roots pump airflow pulsation, vortex analysis and casing structure design optimization.
Funder
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献