A qLPV-MPC Control Strategy for Trajectory Tracking of Quadrotors

Author:

Rodriguez-Guevara Daniel1ORCID,Favela-Contreras Antonio1ORCID,Gonzalez-Villarreal Oscar Julian2ORCID

Affiliation:

1. School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico

2. Centre for Autonomous and Cyber-Physical Systems, Cranfield University, College Road, Cranfield MK43 0AL, UK

Abstract

This article proposes a model predictive control (MPC) strategy for a quadrotor drone trajectory tracking based on a compact state-space model based on a quasi-linear parameter varying (qLPV) representation of the nonlinear quadrotor. The use of a qLPV representation allows for faster execution times, which can be suitable for real-time applications and for solving the optimization problem using quadratic programming (QP). The estimation of future values of the scheduling parameters along the prediction horizon is made by using the planned trajectory based on the previous optimal control actions. The performance of the proposed approach is tested by following different trajectories in simulation to show the effectiveness of the proposed control scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference30 articles.

1. Nonlinear PID-type controller for quadrotor trajectory tracking;Dzul;IEEE/ASME Trans. Mechatron.,2018

2. Modeling of a quadcopter trajectory tracking system using PID controller;Abdelhay;Procedia Manuf.,2019

3. Quadrotor trajectory tracking using PID cascade control;Idres;IOP Conference Series: Materials Science and Engineering,2017

4. Neural network and fuzzy-logic-based self-tuning PID control for quadcopter path tracking;Mjahed;Stud. Inform. Control,2019

5. Minh, L.D., and Ha, C. (2010, January 13–15). Modeling and Control of Quadrotor MAV Using Vision-Based Measurement. Proceedings of the International Forum on Strategic Technology (IFOST), Ulsan, Republic of Korea.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3