A Study of 2D Contour Measurement System at Tool Center Point of Machine Tools

Author:

Yu Ben-Fong,Chen Jenq-Shyong,Tsai Hung-Yih

Abstract

This study proposes a 2D contour measurement system at the tool center point (TCP) that consists of a Blu-ray pickup head and position sensitive detector (PSD). The TCP displacement is equivalent to the relative position between the tool and workpiece. When the machine tools operate the machine part along the desired contour, the TCP displacement affects the machining geometric accuracy. To evaluate the TCP displacement, the contour errors are measured by the cross-grid encoder (KGM) in practice. However, it is difficult to install KGM as it is large and expensive. In this study, an optical measurement system (OMS) is constructed to measure the TCP displacement, named TCP-OMS. A Blu-ray pickup head was installed on the spindle as a tool, and a PSD was installed on the table as a workpiece. To enhance the measurement signal’s resolution and precision of TCP-OMS, the noise was reduced by an AC voltage stabilizer, a DC regulator, and a low-pass filter. The experimental results show that the resolution of displacement measurement was less than 1 μm, and the linearity regions of the X-orientation and Y-orientation were ±3 mm. The motion test on the circular paths were performed on an actual machine tool, and the repeatability tests of this measurement system were verified. The measurement data of circular paths were collected by TCP-OMS and KGM and the results were then compared. When the feed rate of the circular paths increased, the circular deviations were magnified, simultaneously. The axis reversal spikes were observed at the quadrants of a circular path. These measurement results of TCP-OMS matched with the measurement results of KGM. The TCP-OMS developed in this study is characterized by simple installation, compactness, and a low price. It is suitable for 2D contour measurement at the tool center point of machine tools.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference30 articles.

1. Inspection of blade profile and machining deviation analysis based on sample points optimization and NURBS knot insertion;Zhu;Thin-Walled Struct.,2021

2. Towards high milling accuracy of turbine blades: A review;Yan;Mech. Syst. Signal Process.,2022

3. Milling chatter detection with WPD and power entropy for Ti-6Al-4V thin-walled parts based on multi-source signals fusion;Hao;Mech. Syst. Signal Process.,2022

4. Shang, P., Xu, A., and Zhang, D. (2010, January 26–28). A DBB-based accuracy measurement method for rotary axes of high speed 5-axis CNC machining center. In Proceeding of the 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China.

5. A new method and instrument for measuring circular motion error of NC machine tools;Liu;Int. J. Mach. Tools Manuf.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3