Author:
Li Xin,Liu Geng,Fu Xiaojun,Ma Shangjun
Abstract
Studying the motion and load-bearing characteristics of the planetary roller screw mechanism is the basis for the structural design and performance optimisation of the mechanism. The mechanical structures and working principles of different kinds of planetary roller screw mechanisms are summarised. Published papers on kinematic, load-bearing and dynamic models of the planetary roller screw mechanism are reviewed. Based on the slip state in point contacts at the screw–roller and the nut–roller interfaces, the kinematic models are divided into three types. The finite element method and numerical theory are the two main methods used to develop the load-bearing models. Current dynamic models differ mainly concerning whether they take the rotation of the screw into consideration. In this work, each kind of model is presented in detail along with relevant literature. The main conclusions for each type of model are discussed, and an overview of the future evolution of motion and load-bearing characteristics of the planetary roller screw mechanism are given.
Funder
National Natural Science Foundation of China
the Key Project of National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献