Advanced System for Enhancing Location Identification through Human Pose and Object Detection

Author:

Kevin Medrano A.1ORCID,Crespo Jonathan1ORCID,Gomez Javier1ORCID,Alfaro César1ORCID

Affiliation:

1. Department of Computer Science and Statistics, School of Computer Science and Engineering, Rey Juan Carlos University, 28933 Madrid, Spain

Abstract

Location identification is a fundamental aspect of advanced mobile robot navigation systems, as it enables establishing meaningful connections between objects, spaces, and actions. Understanding human actions and accurately recognizing their corresponding poses play pivotal roles in this context. In this paper, we present an observation-based approach that seamlessly integrates object detection algorithms, human pose detection, and machine learning techniques to effectively learn and recognize human actions in household settings. Our method entails training machine learning models to identify the common actions, utilizing a dataset derived from the interaction between human pose and object detection. To validate our approach, we assess its effectiveness using a diverse dataset encompassing typical household actions. The results demonstrate a significant improvement over existing techniques, with our method achieving an accuracy of over 95% in classifying eight different actions within household environments.. Furthermore, we ascertain the robustness of our approach through rigorous testing in real-world environments, demonstrating its ability to perform well despite the various challenges of data collection in such settings. The implications of our method for robotic applications are significant, as a comprehensive understanding of human actions is essential for tasks such as semantic navigation. Moreover, our findings unveil promising opportunities for future research, as our approach can be extended to learn and recognize a wide range of other human actions. This perspective, which highlights the potential leverage of these techniques, provides an encouraging path for future investigations in this field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3