MTPA Control for IPMSM Drives Based on Pseudorandom Frequency-Switching Sinusoidal Signal Injection

Author:

Li KeORCID,Sun TianfuORCID,Jiang FuchengORCID,Feng WeiORCID,Li HuiyunORCID

Abstract

Among various maximum torque per ampere (MTPA) control schemes for interior permanent magnet synchronous motor (IPMSM) drives, the signal-injection-based methods exhibit relatively high overall performance due to their high control accuracy and satisfactory dynamic performance. However, the high current spectrum peaks induced by the fixed-frequency signal injection may cause electromagnetic interference and even audible noise problems in applications, such as electric vehicles, vessels, and aircraft. To address this problem, an MTPA control method using pseudorandom frequency-switching sinusoidal signal injection is proposed in this paper. The sinusoidal signals with two different frequencies are randomly injected into the d- and q-axis currents and the MTPA points can be tracked according to the resultant system response. In this way, a high-performance MTPA control can be achieved regardless of motor parameter variations. Since the injection frequency of the proposed method varies randomly, the induced harmonic components in phase currents no longer concentrate at certain frequencies, and the current spectrum peaks caused by signal injection can be reduced accordingly. The experimental results demonstrate the validity of the presented method.

Funder

Key-Area R&D Program of Guangdong Province

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3