Abstract
The axle temperature is an index factor of the train operating conditions. The axle temperature forecasting technology is very meaningful in condition monitoring and fault diagnosis to realize early warning and to prevent accidents. In this study, a data-driven hybrid approach consisting of three steps is utilized for the prediction of locomotive axle temperatures. In stage I, the Complementary empirical mode decomposition (CEEMD) method is applied for preprocessing of datasets. In stage II, the Bi-directional long short-term memory (BILSTM) will be conducted for the prediction of subseries. In stage III, the Particle swarm optimization and gravitational search algorithm (PSOGSA) can optimize and ensemble the weights of the objective function, and combine them to achieve the final forecasting. Each part of the combined structure contributes its functions to achieve better prediction accuracy than single models, the verification processes of which are conducted in the three measured datasets for forecasting experiments. The comparative experiments are chosen to test the performance of the proposed model. A sensitive analysis of the hybrid model is also conducted to test its robustness and stability. The results prove that the proposed model can obtain the best prediction results with fewer errors between the comparative models and effectively represent the changing trend in axle temperature.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献