Simulation of Energy Absorption Performance of the Couplers in Urban Railway Vehicles during a Heavy Collision

Author:

Lim SunghyunORCID,Ji Yong-hyeon,Park Yeong-il

Abstract

Railway vehicles are generally operated by connecting several vehicles in a row. Mechanisms connecting railway vehicles must also absorb front and rear shock loads that occur during a train’s operation. To minimize damage, rail car couplers are equipped with a buffer system that absorbs the impact of energy. It is difficult to perform a crash test and evaluate performance by applying a buffer to an actual railway vehicle. In this study, a simulation technique using a mathematical buffer model was introduced to overcome these difficulties. For this, a model of each element of the buffer was built based on the experimental data for each element of the coupling buffer system and a collision simulation program was developed. The buffering characteristics of a 10-car train colliding at 25 km/h were analyzed using a developed simulator. The results of the heavy collision simulation showed that the rubber buffer was directly connected to the hydraulic shock absorber in a solid contact state, and displacement of the hydraulic buffer hardly occurred despite the increase in reaction force due to the high impact speed. Since the impact force is concentrated on the vehicle to which the collision is applied, it may be appropriate to apply a deformation tube with different characteristics depending on the vehicle location.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference20 articles.

1. Urban Rail Vehicle Technology Standards [KRT-VE-Part5-2017(R1)]https://krts.krri.re.kr/pdffile/technology/2017/%EC%B2%A0%EB%8F%84%EC%B0%A8%EB%9F%89%20%EC%95%88%EC%A0%84%ED%92%88%EB%AA%A9%EA%B2%80%EC%82%AC%EA%B8%B0%EC%A4%80.pdf

2. Collision tests and model development of a train coupling system using a high-capacity energy absorber

3. Train's crashworthiness design and collision analysis

4. Performance Tests of a High Capacity Buffer Coupling System using a Hydraulic Device

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3