Optimal Classifier to Detect Unit of Measure Inconsistency in Gas Turbine Sensors

Author:

Manservigi Lucrezia,Venturini MauroORCID,Losi Enzo,Bechini Giovanni,Artal de la Iglesia Javier

Abstract

Label noise is a harmful issue that arises when data are erroneously labeled. Several label noise issues can occur but, among them, unit of measure inconsistencies (UMIs) are inexplicably neglected in the literature. Despite its relevance, a general and automated approach for UMI detection suitable to gas turbines (GTs) has not been developed yet; as a result, GT diagnosis, prognosis, and control may be challenged since collected data may not reflect the actual operation. To fill this gap, this paper investigates the capability of three supervised machine learning classifiers, i.e., Support Vector Machine, Naïve Bayes, and K-Nearest Neighbors, that are tested by means of challenging analyses to infer general guidelines for UMI detection. Classification accuracy and posterior probability of each classifier is evaluated by means of an experimental dataset derived from a large fleet of Siemens gas turbines in operation. Results reveal that Naïve Bayes is the optimal classifier for UMI detection, since 88.5% of data are correctly labeled with 84% of posterior probability when experimental UMIs affect the dataset. In addition, Naïve Bayes proved to be the most robust classifier also if the rate of UMIs increases.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven approach for the detection of faults in district heating networks;Sustainable Energy, Grids and Networks;2024-06

2. Methodology to Monitor Early Warnings Before Gas Turbine Trip;Journal of Engineering for Gas Turbines and Power;2023-12-08

3. Influence of the trigger time window on the detection of gas turbine trip;Journal of Physics: Conference Series;2022-12-01

4. Fault diagnosis in district heating networks;Journal of Physics: Conference Series;2022-12-01

5. Detection and identification of faults in a District Heating Network;Energy Conversion and Management;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3