Investigation of Transient Characteristics of a Vertical Axial-Flow Pump with Non-Uniform Suction Flow

Author:

Meng Fan,Qin Zhongjian,Li YanjunORCID,Chen Jia

Abstract

The aim of this paper is to study the influence of non-uniform suction flow on the transient characteristics of a vertical axial-flow pump device. The unsteady calculation is employed to forecast the unstable flow structure with three inlet deflection angles α, and the calculation accuracy under uniform inlet flow is verified by the external characteristic test. The results depict that a promotion in the α will increase the head and shaft power and thus improve the stress and fatigue failure risk of the impeller. At the impeller inlet, the pressure pulsation intensity (PPI) with α = 40° is lower than that with α = 0° caused by a decline in the axial velocity. The dominant frequency of the unsteady pressure signal is the blade-passing frequency (BPF), and the dominant frequency amplitude rises with the increase in α due to the improvement of the pre-rotation impact intensity. At the guide vanes inlet, the dominant frequency of the unsteady pressure signal at the guide vane inlet is also the blade-passing frequency. An improvement in α magnifies the angle between the trailing edge jet of the impeller and the leading edge of the guide vanes under 0.8Qdes and 1.0Qdes, while it diminishes the angle under 1.2Qdes. Thus, the PPI and dominant frequency amplitude with α = 40° are higher than that with α = 0° under 0.8Qdes and 1.0Qdes, but these are lower than that with α = 0° under 1.2Qdes.

Funder

Ranking the top of the list for science and technology projects of Yunnan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3